
CHAPTER XX

Learning to Set Up Numerical
Optimizations of Engineering Designs

Mark Schwabacher, Thomas Ellman, and Haym Hirsh
fschwabac, ellman, hirshg@cs.rutgers.edu
Computer Science Department
Rutgers, The State University of New Jersey
New Brunswick, NJ 08903

ABSTRACT

Gradient-based numerical optimization of complex engineering designs offers
the promise of rapidly producing better designs. However, such methods gen-
erally assume that the objective function and constraint functions are continu-
ous, smooth, and defined everywhere. Unfortunately, realistic simulators tend
to violate these assumptions, making optimization unreliable. Several decisions
that need to be made in setting up an optimization, such as the choice of a start-
ing prototype, and the choice of a formulation of the search space, can make
a difference in how reliable the optimization is. Machine learning can help
by making these choices based on the results of previous optimizations. We
demonstrate this idea by using machine learning for four parts of the optimiza-
tion setup problem: selecting a starting prototype from a database of proto-
types, synthesizing a new starting prototype, predicting which design goals are
achievable, and selecting a formulation of the search space. We use standard
tree-induction algorithms (C4.5 and CART). We present results in two realistic
engineering domains: racing yachts, and supersonic aircraft. Our experimental
results show that using inductive learning to make setup decisions improves
both the speed and the reliability of design optimization.

2 DATA MINING FOR DESIGN AND MANUFACTURING

INTRODUCTION

Automated search of a space of candidate designs seems an attractive way to
improve the traditional engineering design process. Each step of such auto-
mated search requires evaluating the quality of candidate designs, and for com-
plex artifacts such as aircraft, this evaluation must be done by computational
simulation.

Gradient-based optimization methods, such as sequential quadratic pro-
gramming, are reasonably fast and reliable when applied to search spaces that
satisfy their assumptions. They generally assume that the objective function
and constraint functions are continuous, smooth, and defined everywhere. Un-
fortunately, realistic simulators tend to violate these assumptions. We call these
assumption violationspathologies. Non-gradient-based optimization methods,
such as simulated annealing and genetic algorithms, are better able to deal with
search spaces that have pathologies, but they tend to require many more runs of
the simulator than do the gradient based methods. We therefore would like to
find a way to reliably use gradient-based methods in the presence of patholo-
gies.

The performance of gradient-based methods depends to a large extent on
choices that are made when the optimizations are set up, especially in cases
where the search space has pathologies. For example, if a starting prototype is
chosen in a less pathological region of the search space, the chance of reaching
the optimum is increased. Machine learning can help by learning rules from
the results of previous optimizations that map the design goal into these opti-
mization setup choices. We demonstrate this idea by using machine learning
for four parts of the optimization setup problem.

When designing a new artifact, it would be desirable to make use of in-
formation gleaned from past design sessions. Ideally one would like to learn a
function that solves the whole design problem. The training data would consist
of design goals and designs that satisfy those goals, and the learning algorithm
would learn a function that maps a design goal into a design. We believe this
function is too hard to learn. We therefore focused on improving optimization
performance by using machine learning to make some of the choices that are
involved in setting up an optimization. In the course of our work, we found
parts of the optimization setup problem for which machine learning can help:
selecting starting prototypes, predicting whether goals are achievable, and se-
lecting formulations of the search space.

Our first effort was in the domain of the design of racing yachts of the
type used in the America’s Cup race. In this domain, we had success using a
technique that we callprototype selectionwhich maps the design goal into a
selection of a prototype from a database of existing prototypes. We used C4.5,
the standard tree-induction algorithm, in this work.

Our second effort was in the domain of the design of supersonic transport
aircraft. We tried prototype selection in this domain, and found that it did not
perform well, so we decided to try a new idea which we callprototype syn-

LEARNING TO SET UP OPTIMIZATIONS 3

thesis.Prototype synthesis synthesizes a new prototype by mapping the design
goal into the design parameters that define a prototype. It requires continuous-
class induction, which is not available in C4.5; hence we used CART. We then
realized that we could use the training data that we had collected for prototype
synthesis to further enhance optimization performance using a new idea that
we callachievable goal prediction.Achievable goal prediction uses inductive
learning to predict whether a given design goal is achievable, before attempting
to synthesize a starting prototype for the goal. Since this decision is discrete,
rather than continuous, we used C4.5.

We then had the idea of recognizing when designs are at constraint bound-
aries, learning to predict this accurately, and using these predictions to reformu-
late the search space. We call this ideaformulation selection. This prediction is
discrete, so we used C4.5 to make it. We tested this idea in both the yacht and
aircraft domains, and found it to be successful in both domains.

This chapter includes sections describing these four techniques for using
machine learning to set up optimizations: prototype selection, prototype syn-
thesis, achievable goal prediction, and formulation selection. Each section in-
cludes experimental results demonstrating that using the machine learning tech-
niques improves the speed of optimization and/or the quality of the resulting
designs.

INDUCTIVE LEARNING

The problem addressed by an inductive-learning system is to take a collection
of labeled “training” data and form rules that make accurate predictions on
future data. Inductive learning is particularly suitable in the context of an au-
tomated design system because training data can be generated in an automated
fashion. For example, one can choose a set of training goals and perform an
optimization for all combinations of training goals and library prototypes. One
can then construct a table that records which prototype was best for each train-
ing goal.1 This table can be used by the inductive-learning algorithm to gener-
ate rules mapping the space of all possible goals into the set of prototypes in
the library. If learning is successful this mapping extrapolates from the training
data and can be used successfully in future design sessions to map a new goal
into an appropriate initial prototype in the design library.

The specific inductive-learning systems used in this work are C4.5 (Quin-
lan, 1993) (release 3.0, with windowing turned off) for problems requiring
discrete-class induction, and CART2 (Breiman, 1984) for problems requiring
continuous-class induction. Both of these systems represent the learned knowl-
edge in the form of decision trees. The approach taken by these systems is to
find a small decision tree that correctly classifies the training data, then remove
lower portions of the tree that appear to fit noise in the data. The resulting tree
is then used as a decision procedure for assigning labels to future, unlabeled
data.

4 DATA MINING FOR DESIGN AND MANUFACTURING

Decision
Tree

Inductive
Learner
(C4.5 or CART)

Optimizer
(hill climber
or CFSQP) Design

Library

Design
Goal Starting

Prototype

Objective
Function
Evaluation

Constraint
Function
Evaluation

Multidisciplinary Simulator

Optimal
Design

or Reformulation

Figure 1. Design Associate block diagram

THE DESIGN ASSOCIATE

Our prototype-selection and formulation-selection techniques have been devel-
oped as part of the “Design Associate,” a system for assisting human experts
in the design of complex physical engineering structures (Ellman et al., 1992).
Figure 1 shows a block diagram of the system’s software architecture. The
inductive learner learns from the design library a decision tree. Given a new
design goal, the decision tree is used to map this design goal into a choice of
starting prototype from the design library, or a choice of formulation of the
search space. The optimizer optimizes this prototype for the new design goal,
using the selected formulation. At each iteration of this optimization, the op-
timizer uses a multidisciplinary3 simulator to evaluate the objective and con-
straint functions. At the end of the optimization, the new optimal design is
added to the design library.

PROTOTYPE SELECTION

Many automated design systems begin by retrieving an initial prototype from
a library of previous designs, using the given design goal as an index to guide
the retrieval process (Sycara and Navinchandra, 1992). The retrieved prototype
is then modified by a set of design modification operators to tailor the selected
design to the given goals. In many cases the quality of competing designs can
be assessed using domain-specific evaluation functions, and in such cases the
design-modification process is often accomplished by an optimization method
such as hill-climbing search (Ramachandran et al., 1992; Ellman et al., 1992).

LEARNING TO SET UP OPTIMIZATIONS 5

Such a design system can be seen as acase-based reasoningsystem (Kolodner,
1993), in which the prototype-selection method is theindexingprocess, and the
optimization method is theadaptationprocess.

In the context of such case-based design systems, the choice of an initial
prototype can affect both the quality of the final design and the computational
cost of obtaining that design, for three reasons. First, prototype selection may
impact quality when the design process is guided by a nonlinear evaluation
function with unknown global properties. Since there is no known method that
is guaranteed to find the global optimum of an arbitrary nonlinear function
(Schwabacher, 1996), most design systems rely on iterative local search meth-
ods whose results are sensitive to the initial starting point. Second, prototype
selection may impact quality when the prototypes lie in disjoint search spaces.
In particular, if the system’s design modification operators cannot convert any
prototype into any other prototype, the choice of initial prototype will restrict
the set of possible designs that can be obtained byanysearch process. A poor
choice of initial prototype may therefore lead to a suboptimal final design. Fi-
nally, the choice of prototype may have an impact on the time needed to carry
out the design modification process — two different starting points may yield
the same final design but take very different amounts of time to get there. In de-
sign problems where evaluating even just a single design can take tremendous
amounts of time, we believe that selecting an appropriate initial prototype can
be the determining factor in the success or failure of the design process.

To use inductive learning to form prototype-selection rules, we take as
training data a collection of design goals, each labeled with which prototype
in the library is best for that goal. “Best” can be defined to mean the prototype
that best satisfies the design objectives, the prototype that results in the short-
est design time, or the prototype that optimizes some combination of design
quality and design time.

The Yacht Domain

We developed and tested our prototype selection methods in the domain of
12-meter racing yachts, which until recently was the class of yachts raced in
America’s Cup competitions.4 An example of a 12-meter yacht is theStars &
Stripes ’87, which is shown in Figure 2; a close-up of its hull and keel is shown
in Figure 3.5

In the yacht domain, a design is represented by eight design parameters
which specify the magnitude with which a set of geometric operators are ap-
plied to the B-spline surfaces (Rogers and Adams, 1990) of the starting pro-
totype. The goal is to design the yacht which has the smallest course time
for a particular wind speed and race course. Course time is evaluated using a
“Velocity-Prediction Program” called “AHVPP” from AeroHydro, Inc., which
is a marketed product used in yacht design (Letcher, 1991).

A search space is specified by providing an initial prototype geometry
and a set of operators for modifying that prototype. Our current set of shape-

6 DATA MINING FOR DESIGN AND MANUFACTURING

Figure 2. Stars & Stripes ’87, winner of the 1987 America’s Cup competition

Figure 3. The hull and keel of Stars & Stripes ’87.

modification operators was obtained by asking our yacht-design collaborators
for an exhaustive list of all features of a yacht’s shape that might be relevant to
the racing performance of a yacht. These operators include

� Global-Scaling Operators:Scale-X, Scale-YandScale-Zchange the over-
all dimensions of a racing yacht, by uniformly scaling all surfaces.

� Prismatic-Coefficient Operators:Prism-X, Prism-YandPrism-Zmake a
yacht’s canoe-body more or less streamlined, when viewed along theX,
Y andZ axes respectively.

� Keel Operators:Scale-Keeland Invert-Keelchange the depth and taper
ratio of the keel respectively.

These eight operators represent a subset of the full set that were actually de-
veloped, focusing on a smaller set suitable for testing our prototype-selection
methods.

LEARNING TO SET UP OPTIMIZATIONS 7

Prototype Selection Results

We conducted several sets of experiments. In each case we compare our ap-
proach with each of four other methods:

1. Closest goal. This method requires a measure of the distance between two
goals, and knowledge of the goal for which each prototype in the design
library was originally optimized. It chooses the prototype whose original
goal has minimum distance from the new goal. Intuitively, in our yacht-
design problem this method chooses a yacht designed for a course and
wind speed most similar to the new course and wind speed.

2. Best initial evaluation. This method requires running the evaluation func-
tion on each prototype in the database. It chooses the prototype that, ac-
cording to the evaluation function, is best for the new goal (before any op-
erators have been applied to the prototype). In the case of our yacht-design
problem this corresponds to starting the design process from whichever
yacht in the library is fastest for the new course and wind speed.

3. Most frequent class. This is actually a very simple inductive method that
always chooses a fixed prototype, namely the one that is most frequently
the best prototype for the training data.

4. Random. This method involves simply selecting a random element from
the design library, using a uniform distribution over the designs.

We compare these methods using two different evaluation criteria:

1. Error rate . How often is the wrong prototype selected?
2. Course-time increase. How much worse is the resulting average course

time than it would be using the optimal choice that an omniscient selection
would make?

In our experiments we focus primarily on the question of how well our
inductive-learning prototype-selection method handles problems where the pro-
totypes lie in disjoint search spaces. Our experiments therefore explore how
prototype selection affects the quality of the final design.

For the prototype selection experiments in the yacht domain, we used the
Rutgers Hill-climber as our optimizer. It is an implementation of steepest-
descent hill-climbing, that has been augmented so as to allow it to “climb over”
bumps in the surface defined by the objective function that have less than a cer-
tain width or a certain height.

For our first set of experiments we created a database of four designs that
would serve as our sample prototype library (and thus also serve as the class
labels for the training data given to our inductive learner). To simulate the effect
of having each prototype define a different space, the design library was created
by starting from a single prototype (the Stars and Stripes ’87) and optimizing
for four different goals using all eight of our design-modification operators. All
subsequent design episodes used only four of the eight operators, so that each
yacht would define a separate space.6

8 DATA MINING FOR DESIGN AND MANUFACTURING

TABLE 1. A portion of the input to C4.5 for prototype
selection in the yacht domain.

Long-Leg Short-Leg Wind speed Initial-Design

180 0 8 Design 1
180 0 10 Design 2
180 0 12 Design 2
180 0 14 Design 2
180 0 16 Design 2
180 90 8 Design 1
180 90 10 Design 4
180 90 12 Design 4
180 90 14 Design 4
180 90 16 Design 1

long-leg <= 90 :
| windspeed > 10 : Design-1
| windspeed <= 10 :
| | short-leg <= 90 : Design-1
| | short-leg > 90 : Design-2
long-leg > 90 :
| windspeed > 14 : Design-2
| windspeed <= 14 :
| | windspeed <= 10 : Design-4
| | windspeed > 10 : Design-4

Figure 4. Example of a prototype-selection decision tree generated by C4.5.

We defined a space of goals to use in testing the learned prototype-selection
rules. Each goal consists of a wind speed and a race course, where the wind
speed is constrained to be 8, 10, 12, 14, or 16 knots, the race course is con-
strained to be 80% in one direction, and 20% in a second direction, and each
direction is constrained to be an integer between 0 and 180 degrees. This space
contains 162,900 goals.

To generate training data we defined a set of “training goals” that spans the
goal space. This smaller set of goals was defined in the same fashion as for the
testing set of goals except that the directions in the race course are restricted to
be only 0, 90, or 180 degrees, yielding a smaller space of 30 goals. To label the
training data we attempted to find designs for each of the 30 goals starting from
each of the four prototypes using the restricted set of operators, and determined
which starting point was best.

To generate test data we randomly selected ten “testing goals” from the goal
space. We then generated designs starting from each of the four prototypes in
the database for each of these testing goals to determine which prototype was
best, as well as to determine how much of a loss in course time each incorrect

LEARNING TO SET UP OPTIMIZATIONS 9

TABLE 2. Comparison of prototype-selection
methods when trained on a set of goals that spans
the goal space, using AHVPP.

Error Course-Time
Method Rate Increase (sec)

Inductive Learning 30% 24
Most Frequent Class 70% 47
Random Guessing 75% 62

Best Init Eval 70% 64
Closest Goal 70% 78

selection would impose. Table 1 shows a portion of the input to C4.5, and
Figure 4 gives an example of a decision tree output by C4.5. Table 2 compares
the results using C4.5 with the other prototype-selection methods. (Since there
are four prototypes, one would expect random guessing to get 75% of the test
examples wrong.)

In this experiment, the inductive method (C4.5) performed better than the
other methods on both measures of performance. Moreover, we were particu-
larly surprised by how poorly the non-inductive prototype-selection methods
(closest goal and smallest initial evaluation) performed — our expectation was
that the prototypes chosen by these methods would be close in “design space”
to the optimal final design, thus yielding better final designs than starting from
the other prototypes.

After studying these results we generated two new hypotheses for why
these two prototype-selection methods did not work well. The first is that the
shape of the design space may be such that there is little relationship between
the distance between two designs and the ability of the hill-climber to climb
from one design to the other. If the space contains “bumps” or “ridges” over
which the hill-climber cannot climb, then it might be more important for the
initial prototype to be on the “right side” of a bump or a ridge than for it to
be close to the optimal point. Our second new hypothesis was that some of the
prototypes in the database may be “bad” prototypes. This could be the case if
the hill-climber got stuck at a local (non-global) optimum during the run that
produced the prototype. This latter hypothesis was supported by the fact that
one of the four prototypes was never found to be a good starting point for any of
the 30 goals in the training data (not even the goal for which it was supposedly
optimal, since it wound up being a local optimum and starting from another
prototype yielded a superior result). In a realistic design scenario, when there
is no control over the source of a design library, there could easily be “bad”
prototypes included. Unlike the non-inductive prototype-selection methods, the
inductive methods learn to avoid the bad prototypes.

We performed some experiments to test our first new hypothesis that the
closest-goal and smallest-initial-evaluation methods performed poorly because
of the “bumps” in the evaluation function. We repeated the earlier experiments

10 DATA MINING FOR DESIGN AND MANUFACTURING

TABLE 3. Comparison of prototype-selection
methods when trained on a set of training exam-
ples that spans the goal space, using the simplified
VPP.

Error Course-Time
Method Rate Increase (sec)

Best Init Eval 12% 26
Inductive Learning 37% 57

Closest Goal 40% 76
Most Frequent Class 45% 175
Random Guessing 75% 257

using a simplified, “smooth” velocity prediction program, called “RUVPP,” that
we developed at Rutgers. RUVPP differs from the more complex AHVPP in
several respects. To begin with, RUVPP represents a yacht as a list of major ge-
ometric dimensions such as length, depth, and beam, rather than B-spline sur-
faces. Furthermore, RUVPP embodies a number of simplifying assumptions
about the physics of sailing that are not made in AHVPP. Nevertheless, the
simple version, RUVPP, is useful for two reasons: RUVPP is much faster to
execute than AHVPP, and RUVPP has fewer of the bumps and ridges that ap-
pear in AHVPP. We therefore expect that a hill-climbing search algorithm is
less likely to get stuck on the wrong side of a bump or ridge when the simple
version, RUVPP, is used as an evaluation function. Table 3 presents the results
of experiments comparing the performance of inductively learned prototype-
selection rules to the other prototype-selection methods, repeating our earlier
experiments, but using RUVPP as the evaluation function, and using forty ran-
dom test cases instead of just ten.

Because RUVPP is much faster than AHVPP, we conducted additional sup-
porting experiments to test our first new hypothesis, to see if using a spanning
set of goals as training data was significant for our results. In particular, rather
than using inductive learning on a set of goals that span the space of possi-
ble goals, we also performed experiments where C4.5 was trained on a ran-
dom sample of goals selected from the same space as the testing data. This
was done using ten trials of four-fold cross-validation on a set of forty random
goals. Each such trial involves randomly dividing the data into four sets of size
ten, using three of the sets for training data and the remaining one as testing.
This is repeated four times, using each ten-element set once for testing, and this
process was repeated ten times with different random partitionings of the data.
Table 4 reports the results of these experiments.

Consistent with our first new hypothesis, the closest-goal and best-initial-
evaluation methods both did much better in both cases with the simplified VPP
than they did with AHVPP, while C4.5 did about the same as it had done before.
We believe that because the simplified VPP is much smoother than AHVPP, the
hill-climber is much less likely to get stuck, so that the distance in goal space or

LEARNING TO SET UP OPTIMIZATIONS 11

TABLE 4. Comparison of prototype-selection
methods when trained and tested on random
goals, using cross-validation and the simplified
VPP.

Error Course-Time
Method Rate Increase (sec)

Best Init Eval 12% 26
Inductive Learning 30% 35

Closest Goal 40% 76
Most Frequent Class 45% 175
Random Guessing 75% 257

TABLE 5. Comparison of prototype-selection
methods when trained on a set of goals that span
the space, using the simplified VPP, and a “bad”
prototype in the database.

Error Course-Time
Method Rate Increase (sec)

Best Init Eval 10% 80
Inductive Learning 30% 82

Closest Goal 32% 89
Most Frequent Class 45% 171
Random Guessing 75% 348

the difference in initial evaluation becomes much more relevant when choosing
a prototype. In fact, the improvement in the best-initial-evaluation method was
so great that it significantly outperformed the inductive method.

We performed another set of experiments to test our second new hypothe-
sis of why the closest-goal and smallest-initial-evaluation method performed so
poorly using AHVPP, namely that they were unable to avoid the “bad” proto-

TABLE 6. Comparison of prototype-selection
methods when trained and tested on a set of ran-
dom goals, using cross-validation, the simplified
VPP, and a “bad” prototype in the database.

Error Course-Time
Method Rate Increase (sec)

Inductive Learning 19% 38
Best Init Eval 10% 80
Closest Goal 32% 89

Most Frequent Class 45% 171
Random Guessing 75% 348

12 DATA MINING FOR DESIGN AND MANUFACTURING

type in the database. We repeated our preceding experiments using the simpli-
fied VPP, except that we intentionally put a “bad” prototype into the database.
To generate a bad prototype, we started with the Stars and Stripes ’87, and
added a random number between -0.2 and +0.2 to each of the operator param-
eters. We then randomly chose one of the four prototypes in the database to
replace with the bad prototype (but we left the class label the same). The re-
sults of repeating the experiments with the bad prototype in the database are
presented in Table 5 for training on goals that span the space, and Table 6 for
training on random goals.

Consistent with our second new hypothesis, C4.5’s ability to avoid the
“bad” prototype improved its performance relative to the other methods. When
trained on the spanning goals, C4.5 performed only slightly worse than the
smallest-initial-evaluation method. When trained on the random goals, C4.5
performed markedly better than any other method as measured by average
course-time increase, although the smallest-initial-evaluation method had a low-
er error rate. This apparent anomaly can be explained as follows: The “bad”
prototype was very bad, so that choosing it even a few times resulted in large
increases in average course time. C4.5 never chose the bad prototype. The best-
initial-evaluation method occasionally chose the bad prototype, so that even
though it chose the best prototype more frequently than C4.5, the few times
when it chose the bad prototype worsened its average course-time increase.

The Cost of Learning

One important question to answer is whether the inductive prototype-selection
method is worth the considerable “off-line” expense of collecting training data
— every training example requires one design run for each design in the pro-
totype library. An alternative, possibly cheaper method would be to take an
“on-line” approach: for each new design problem optimize starting from every
prototype in the database, and then use whichever of the resulting designs is
the best.

If the quality of the final design is extremely important and there is ample
CPU time available, this “exhaustive” method is the one to use (out of the meth-
ods listed in Table 2). On the other hand, if limiting CPU time is important, our
inductive learning method becomes cost effective when the computational ex-
pense of learning can be amortized over a sufficiently large number of new de-
sign goals. More specifically, the inductive prototype-selection method is less
expensive than the exhaustive method whenever the number of hill-climbing
runs taken by the inductive approach is less than the number of runs taken by
the exhaustive approach, i.e.,TP +G < PG or

G >
T

1� 1

P

whereT is the number of training examples,P is the number of prototypes in
the database, andG is the number of new goals for which prototypes need to be

LEARNING TO SET UP OPTIMIZATIONS 13

Altitude Duration
Phase Mach m ft (min) comment

1 0.227 0 0 5 “takeoff”
2 0.85 12 192 40 000 50 subsonic cruise (over land)
3 2.0 18 288 60 000 225 supersonic cruise (over ocean)

capacity: 70 passengers.

TABLE 7. Mission specification for aircraft in Figure 5

selected. (When using the inductive prototype-selection method,TP is the cost
of generating the training data, andG is the cost of performing optimizations
for the new goals. When using the exhaustive method, each prototype in the
database must be optimized for each new goal, at a cost ofPG.) In all of
the experiments that we performed, there were four prototypes and 30 training
examples, so our inductive approach will be less expensive than the exhaustive
approach as long as at least 40 out of the more than 150,000 remaining design
goals must be attempted.

When doing prototype synthesis rather than prototype selection, it is not
necessary to collect training data in which each prototype in a database is used
as a starting point of an optimization for each of a collection of goals. (Pro-
totype synthesis takes as training data the optimal design parameters for each
goal, rather than the selection of the best prototype from a database for each
goal.) Instead, any optimizations that have been previously done (within the
same goal space) can be used as training data. Hopefully, such data will al-
ready exist in a design library, so additional optimizations will not be needed
to generate training data. Prototype synthesis is further described in the next
section.

PROTOTYPE SYNTHESIS AND ACHIEVABLE GOAL PRE-
DICTION

Prototype synthesis uses continuous-class induction (also known as regression)
to map the design goal directly into the design parameters that define a new
prototype, instead of selecting an existing prototype from a database. What is
learned is not a set of rules for selecting a prototype, but rather a set of func-
tions that map the design goal into the design parameters. We performed some
experiments to test prototype synthesis in the domain of supersonic transport
aircraft design.

14 DATA MINING FOR DESIGN AND MANUFACTURING

0

19.8298

47.2618

67.0916

0
1.6764

4.48947

-9.66345 0 9.66345

engineScale=1.14596
wing_area(m^2)=342.846
wing_aspect_ratio=1.0895
fuselage_taper_length(m)=39.6596
wing_t_over_c=0.0272754
fuel_annulus_width(m)=0
passenger_cabin_radius(m)=1.3716
structure_annulus_width(m)=0.3048
fuselage_mid_length(m)=27.432
fuselage_diameter(m)=3.3528
wing_sweep(rad)=1.29379
wing_root_chord(m)=35.4785
wing_span(m)=19.3269
v_tail_sweep(rad)=0.785398
v_tail_root_chord(m)=8.46036
v_tail_taper_ratio=0.33
v_tail_semi_span(m)=2.81307
v_tail_t_over_c=0.03
nacelle_length(m)=11.5824
nacelle_inlet_diameter(m)=0.85344
engine_diameter(m)=0.981579
wing_sweep_over_design_mach_angle=1.23548
wing_taper_ratio=0

Figure 5. Supersonic transport aircraft designed by our system (dimensions in meters)

The Aircraft Domain

Figure 5 shows a diagram of a typical airplane automatically designed by our
software system to fly the mission shown in Table 7. The optimizer attempts to
find a good aircraft conceptual design for a particular mission by varying ma-
jor aircraft parameters such as wing area, aspect ratio, engine size, etc,̇ using
a numerical optimization algorithm. The optimizer evaluates candidate designs
using a multidisciplinary simulator. In our current implementation, the opti-
mizer’s goal is to minimize the takeoff mass of the aircraft, a measure of merit
commonly used in the aircraft industry at the conceptual design stage. Takeoff
mass is the sum of fuel mass, which provides a rough approximation of the
operating cost of the aircraft, and “dry” mass, which provides a rough approx-
imation of the cost of building the aircraft. The simulator computes the takeoff
mass of a particular aircraft design for a particular mission as follows:

1. Compute “dry” mass using historical data to estimate the weight of the

LEARNING TO SET UP OPTIMIZATIONS 15

aircraft as a function of the design parameters and passenger capacity re-
quired for the mission.

2. Compute the landing massm(t�nal) which is the sum of the fuel reserve
plus the “dry” mass.

3. Compute the takeoff mass by numerically solving the ordinary differential
equation

dm

dt
= f(m; t)

which indicates that the rate at which the mass of the aircraft changes
is equal to the rate of fuel consumption, which in turn is a function of
the current mass of the aircraft and the current time in the mission. At
each time step, the simulator’s aerodynamic model is used to compute the
current drag, and the simulator’s propulsion model is used to compute the
fuel consumption required to generate the thrust which will compensate
for the current drag.

A complete mission simulation requires about 1/4 second of CPU time on
a DEC Alpha 250 4/266 desktop workstation.

The numerical optimizer used in the prototype synthesis experiments is CF-
SQP (Lawrence et al., 1995)7, a state-of-the-art implementation of the Sequen-
tial Quadratic Programming (SQP) method. SQP is a quasi-Newton method
that solves a nonlinear constrained optimization problem by fitting a sequence
of quadratic programming problems8 to it, and then solving each of these prob-
lems using a quadratic programming method. We have supplemented CFSQP
with rule-based gradients(Schwabacher and Gelsey, 1997) andmodel con-
straints(Gelsey et al., 1998).

Because the search space has many local optima, we use a technique that
we call “random multistart” to attempt to find the global optimum. In ann-
point random multistart, the system randomly generates starting points within
a particular box until it findsn evaluable points9, and then performs an SQP
optimization from each of these points. The best design found in thesen opti-
mizations is taken to be the global optimum.

In the airframe domain, the design goal is to minimize take-off mass (a
rough estimate of life-cycle cost) for a specified mission. We defined the fol-
lowing space of missions:

distance between 1609 km (1000 miles)
and 16 090 km (10 000 miles)

percentage over land between 0 and 100%
mach number over land of 0.85
altitude over land 12 192 m (40 000 ft)
mach number over water between 1.5 and 2.2
altitude over water 18 288 m (60 000 ft)
optional takeoff phase, no climb phase

A mission within this space can be represented using three real numbers
(distance, percentage over land, and mach number) and one Boolean value

16 DATA MINING FOR DESIGN AND MANUFACTURING

distance > 14 456 km (8982.46 miles): infeasible
distance <= 14 456 km (8982.46 miles):
| distance <= 10 276 km (6384.94 miles): feasible
| distance > 10 276 km (6384.94 miles):
| | overland <= 23.6023% : feasible
| | overland > 23.6023% : infeasible

Figure 6. Learned decision tree for deciding if a mission is feasible.

(whether the takeoff phase is included). We generated 100 random missions as
follows: The distance and mach number were uniformly distributed over their
possible ranges. There was a 1/3 probability of having the mission entirely over
land, a 1/3 probability of having it entirely over water, and a 1/3 probability of
having the percentage over land uniformly distributed between 0 and 100%.
There was a 1/2 probability of including the takeoff phase.

Achievable Goal Prediction

In order to generate training data to test our techniques in the airframe domain,
we performed a 10-point random multistart CFSQP optimization for each of
the 100 random missions. We found that for many of these missions, CFSQP
was unable to find a feasible design in any of the ten runs — that is, it was
unable to design a plane that could fly the mission. It occurred to us that it
would be valuable if we could predict in advance whether a given mission
was achievable, so that we could avoid attempting to synthesize prototypes for
infeasible missions. We hypothesized that C4.5 would be able to make this
prediction, and that it would be able to do so with greater accuracy than MFC.

To test this newachievable goal predictionidea, we trained C4.5 on a set of
training examples showing whether each of our 100 missions was feasible. It
produced the decision tree in Figure 6. This decision tree shows that missions
are infeasible if they are very long, or if they are moderately long and have a
significant portion over land. Further analysis revealed that building a plane to
fly such a mission would require an engine larger than the largest engine that we
allowed. Our upper bound on engine size can be considered to be representative
of the largest commercially available engine.

Tenfold cross validation showed that C4.5 has a 4% error rate on this learn-
ing task, compared with 50% for random guessing and 24% for most frequent
class. The decision tree of figure 6 can be used to predict, without doing any
simulation or optimization, whether a new proposed mission is feasible.

Prototype Synthesis

In order to map the new mission into the numerical design parameters that
define a prototype, we need to usecontinuous-class induction(which is also

LEARNING TO SET UP OPTIMIZATIONS 17

TABLE 8. Accuracy of CART in predicting each design pa-
rameter in the airframe domain.

Design Parameter Relative RMSE

engine size 0.65
wing area 0.59

wing aspect ratio 0.06
fuselage taper length 0.07

effective structural thickness over chord 0.08
wing sweep over design mach angle 0.08

wing taper ratio 0.21
fuel annulus width 1.02

TABLE 9. Comparison of prototype-synthesis methods.

Method Success Cost (number of simulations)

CART 13/16 7394
mean 14/16 11963

1 random 8/16 16893
2 random 13/16 33883
3 random 14/16 47395

known as regression). We used CART (Classification And Regression Trees),
which builds a “regression tree” that has a numerical constant at each leaf
(Breiman, 1984). We trained CART on the 100 randomly generated training
goals as follows: For each design parameter, we gave CART a set of training
data, where each item in the training data included the goal and the optimal
value of the design parameter. CART thus generated a set of trees to map the
design goal into a set of design parameters that we hope will be near the opti-
mal values for that goal. Table 8 shows the root mean squared error in CART’s
prediction of each design parameter, relative to the error of “constant regres-
sion,” which always uses the mean of the training data. A value less than one in
this table indicates that CART’s prediction was more accurate than that of con-
stant regression. Our expectation that these relative errors would be low was
confirmed for all of the parameters except fuel annulus width.

We performed a set of experiments to test whether using these trees to do
prototype synthesis would produce better optimization performance than using
the mean prototype or a random prototype. We used 25 randomly generated
testing goals. Table 9 compares using the prototypes synthesized by CART
with using a 1-, 2-, or 3-point random multistart, or always using the proto-
type which is the mean of all the optimized prototypes in the training data. Of
the 25 randomly generated test goals, 16 were feasible. The “success” column
shows the number of optimizations that came within 1% of the point that we
believe to be the global optimum.10 Some of the failures occurred because the

18 DATA MINING FOR DESIGN AND MANUFACTURING

TABLE 10. Performance of one random probe, averaged over ten
trials.

Measure Success Cost (number of simulations)

Mean 8.8/16 15062
Standard Deviation 1.9/16 3102

learning method produced an unevaluable prototype that could not be simu-
lated, and therefore could not be optimized. Other failures occurred because
the optimizer, when started from the synthesized point, failed to get within 1%
of the apparent global optimum. The “cost” column shows the total number of
simulations used in the 16 optimizations. Using the mean prototype instead of
a single random prototype resulted in much greater success, at 33% lower cost.
Using CART produced a success rate about the same as using the mean proto-
type, with an additional 38% cost reduction. Using a 2-point random multistart
produced the same success rate as using CART, but it required more than four
times as many simulations.

To test the significance of the result that CART performed better than one
random probe, we repeated the one-random-probe test ten times, with ten dif-
ferent seeds to the random number generator. The mean and standard deviation
of the success rate and cost are shown in Table 10. CART’s success rate was
more than two standard deviations higher than that of one random probe, and
its cost was more than two standard deviations lower than that of one random
probe.

FORMULATION SELECTION

Besides the selection of a starting prototype, another important decision in set-
ting up an optimization is the decision on how to formulate the search space.
This decision can substantially affect the performance of the optimizer in two
ways. First, using a lower-dimensional formulation of the search space makes
optimization faster, since each gradient computation requires fewer runs of the
simulator, and the distance in design space from the starting point to the opti-
mum is smaller. Second, different formulations of the search space can result
in different degrees of “smoothness” of the search space, which can impact not
only the speed of the optimizer, but also the ability of the optimizer to get to
the optimum, and therefore the quality of the resulting designs.

We present a method of reformulation called “constraint incorporation,”
which reduces the dimensionality of the search space and increases its smooth-
ness by incorporating constraints into the search space.

Traditionally, numerical optimization has dealt with explicit, “hard” con-
straints. The optimizer assumes that these constraints can never be violated. A

LEARNING TO SET UP OPTIMIZATIONS 19

hard constraint can be expressed as

f(x1; x2; : : : ; xn) � k

(Here x1; x2; : : : ; xn are thedesign parametersthat represent the design.)
The constraint is said to beinactive if f(x1; x2; : : : ; xn) < k, active if
f(x1; x2; : : : ; xn) = k, andviolatedif f(x1; x2; : : : ; xn) > k. Hard constraints
can result from the laws of physics, for example.

Another type of constraint is the “soft” constraint, for which there is some
sort of known penalty for violating the constraint. A soft constraint can be
expressed as

if f(x1; x2; : : : ; xn) > k then apply penaltyP (x1; x2; : : : ; xn)

These usually arise from human-written laws, such as regulations specifying
a monetary penalty for exceeding a certain noise level. In either case, if it is
known that the constraint will be active at the optimal design point, and the
constraint functionf is invertible, then the constraint can beincorporatedinto
the search space by using the inverse off to eliminate one of the design pa-
rameters. This incorporation is done by making the inequality constraint into
an equality constraint, and then solving for one of the design parameters in
terms of the other design parameters. (Papalambros and Wilde, 1988) describe
how monotonicity knowledge can be used to determine that certain constraints
will be active at the optimum. Incorporating these constraints produces a new
search space with lower dimensionality, since the incorporation eliminates a de-
sign parameter, and greater smoothness, since the incorporation eliminates the
“ridge” (or non-smoothness) in the search space caused by the “if” statement
in the constraint. If there aren constraints that can be incorporated in this way,
then there are2n possible formulations that can be produced by incorporating
different subsets of constraints.

Constraint activity depends on the goal (some constraints are active at the
optimum for only some design goals), for two reasons: First, the constraint
thresholds are part of the design goal. Second, different design goals will result
in different optimal values of the design parameters on which the constraint
functions depend.

Because constraint activity depends on the goal, different formulations of
the search space are appropriate for different design goals. We describe a way
in which inductive learning can be used to map the design goal into the appro-
priate formulation.

To use inductive learning to form formulation-selection rules, we take as
training data a collection of design goals, each labeled with the set of con-
straints that are active (within a threshold) at the optimal design point. We run
the inductive learner once for each constraint, producing for each constraint a
set of rules that can be used to predict whether the constraint will be active for
new design goals.

The training data can be generated in an automated fashion. For example,
one can choose a set of training goals and perform an optimization for each

20 DATA MINING FOR DESIGN AND MANUFACTURING

goal. One can then evaluate each constraint function for each optimal design,
and then construct a table that records which constraints were active (within
a threshold) for each training goal. This table can be used by the inductive-
learning algorithm to generate a set of rules for each constraint, mapping the
space of all possible goals into a prediction of whether or not that constraint
will be active at the optimal design point for that goal. If learning is successful,
these mappings extrapolate from the training data and can be used successfully
in future design sessions to map a new goal into an appropriate formulation.

Formulation Selection Results in Yacht Domain

We performed some experiments to test the performance of formulation selec-
tion in the yacht domain. In the experiments described in this subsection, we
used CFSQP as the optimizer, withcourse-time, computed by RUVPP, as the
objective function, and with one explicit, nonlinear, “hard” model constraint.
This constraint specifies that the mass of the yacht, before adding any ballast,
must be less than or equal to the mass of the water that it displaces. (In other
words, the boat must not sink.)

Yachts entered in the 1987 America’s Cup race had to satisfy a hard con-
straint known as the 12-Meter Rule (IYRU, 1985). Instead of using this rule
as an explicit constraint, we incorporated it into the search space. (How we
incorporated it is described below.) The basic formula in the rule is:

length� freeboard+
p
sailarea

2:37
� 12m

In addition to the basic formula, the rule contains several soft constraints, along
with associated penalties for violating these constraints. These soft constraints
are:

� draft constraint
� beam constraint
� displacement constraint
� winglet span constraint

For example, thebeam constraintstates

if beam < 3:6m, then add four times the difference tolength

While constructing the simulator, we used a reasoning process similar to that
described in (Papalambros and Wilde, 1988) to determine that the constraint de-
scribed by the basic formula of the 12-Meter Rule, above, will always be active,
since the objective function being minimized,course-time, is monotonically
non-increasing insail-area,11 and the left-hand-side of the constraint is mono-
tonically increasing insail-area. We thereforeincorporatedthis constraint into
the simulator by solving forsail-area in terms of the other design parame-
ters. So, for example, when the optimizer makeslength bigger,sail-area is
automatically made smaller. In addition, because we also implemented the soft

LEARNING TO SET UP OPTIMIZATIONS 21

354

355

356

357

358

359

360

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9

co
ur

se
 ti

m
e

(s
ec

on
ds

)

beam (meters)

"beams"

Figure 7. The nonsmoothness in the search space caused by the beam constraint.

constraints as penalty functions, reducingbeam beyond3:6m causes the quan-
tity lengthin the formula to increase, which causessail-areato decrease.12

Because the beam constraint contains anif statement, this incorporation
causes a nonsmoothness incourse-timeas a function ofbeam. That is, there is
a discontinuity in the first derivative ofcourse-timewith respect tobeam. Fig-
ure 7 illustrates this nonsmoothness by showing the cross-section of the search
space corresponding to thebeam design parameter.13 This nonsmoothness can
cause a gradient-based optimizer such as CFSQP to get stuck, and to fail to get
to the optimum.

For many design goals, the optimal design is right on the constraint bound-
ary. The optimal beam is often 3.6 m. If we expect the optimal beam to be 3.6
m, then we can incorporate the beam constraint into the operators. In the case of
the beam constraint, this incorporation is trivial — we simply setbeam to 3.6 m
and leave it there. For other constraints, the incorporation is more complicated.
For example, there is a constraint that specifies a penalty ifdisplacement does
not vary with a certain cubic polynomial inlength.Displacement is not a de-
sign parameter; rather, it is a quantity computed from all of the design parame-
ters. In order to incorporate the displacement constraint, we used Maple (Char
et al., 1992), a symbolic algebra package, to invert the displacement formula,
and created a new set of operators that vary certain parameters while main-
tainingdisplacement at the minimum displacement allowed by the constraint.
For still-more-complicated constraints, it might not be possible to invert the
constraint function using Maple; it might therefore be necessary for the opera-

22 DATA MINING FOR DESIGN AND MANUFACTURING

tors to contain numerical solvers that find the right values of the incorporated
design parameters so as to put the design on the constraint boundary.14

We created operators to incorporate all four of the above-listed 12-Meter
Rule constraints: the draft constraint, the beam constraint, the displacement
constraint, and the winglet constraint. Using these operators, we are able to ei-
ther incorporate or not incorporate each of these four constraints independently.
We thus defined a set of sixteen (2

4) possible formulations of the search space.
From our initial experiments with these operators, we determined empirically
that incorporating the draft constraint substantially improved the reliability and
speed of optimization for any design goal. We therefore decided to always in-
corporate the draft constraint, leaving us with a space of eight possible formu-
lations that we used in the experiments described below.

Having defined eight formulations of the search space, we used inductive
learning to decide, based on the design goal, which formulation to use. As
training data, we used 100 previous optimizations. The optimizer failed for one
of these goals, so we used the remaining 99 goals as training data in the results
that follow. For each previous optimization, we evaluated each 12-Meter Rule
constraint function at the optimum, and determined if the constraint was active
(within a tolerance). Each of these previous optimizations had as its design goal
minimizing course time for a single-leg race course, which can be represented
using two numbers: the wind speed, and the heading (the angle between the
yacht’s direction and the wind direction). The design goal can therefore be
represented using these two numbers. We ran the inductive learner once for
each of the three constraints. Each time, the inductive learner was provided
with a set of triples: the wind speed, the heading, and a ternary value indicating
whether the constraint was inactive, active, or violated. One of the constraints
was violated at the optimum in 10 of these optimizations. Figure 8 gives an
example of a decision tree output by C4.5. This decision tree predicts whether
the displacement constraint will be active at the optimum, based on the design
goal. By running a new design goal down three decision trees, one for each of
the three constraints that can be incorporated, the system can make predictions
of whether each constraint will be active at the optimum. These three yes/no
predictions directly map into one of the eight (2

3) formulations of the search
space.

We used C4.5 to perform tenfold cross-validation, and obtained the error
rates shown in Table 11. Here we compare the error rates of C4.5 with and
without pruning, and of C4.5rules, a variant of C4.5 that extracts rules from
the trees, with the expected error rate of random guessing (which is two-thirds
since there are three classes from which to guess), and the error rate of the
Most Frequent Class (MFC) learning method. MFC always chooses the class
that occurs most frequently in the training data. In this case, that means that
it always chooses the same formulation, namely the one that is most often the
best formulation in the training data.

As Table 11 shows, C4.5 with pruning performed slightly better than C4.5
without pruning or C4.5rules (and so in our further experiments reported below

LEARNING TO SET UP OPTIMIZATIONS 23

heading <= 109 :
| windspeed <= 6.3 : active
| windspeed > 6.3 :
| | windspeed > 8.2 : violated
| | windspeed <= 8.2 :
| | | heading <= 65 : violated
| | | heading > 65 : active
heading > 109 :
| windspeed > 11.5 : active
| windspeed <= 11.5 :
| | heading <= 135 : active
| | heading > 135 : inactive

Figure 8. Learned decision tree for the displacement constraint.

TABLE 11. Cross-validated error rates for selecting
whether to incorporate each constraint.

method Beam Displacement Winglet

C4.5 w/ pruning 11.1% 15.1% 7.0%
C4.5 w/o pruning 11.1% 15.1% 10.0%

C4.5rules 11.1% 15.1% 10.0%
MFC 33.3% 53.5% 13.1%

Random 66.7% 66.7% 66.7%

we use only C4.5 with pruning), and all three substantially outperformed MFC,
which in turn substantially outperformed random guessing.

These results are for error rates, the proportion of cases where learning
makes an incorrect guess. A more important question in this domain is how
learning affects the overall problem-solving task, namely how it improves the
speed and reliability of the design optimization process. Does learning make
the design process faster or slower? Are the resulting designs better or worse?
To measure these effects, we performed optimizations for 25 new randomly
generated goals using the formulations suggested by each learning method. Ta-
ble 12 shows the effect that C4.5 (with pruning) and MFC had on the average
course time (the quality of the design), and average number of evaluations (the
speed of the optimization), as compared with the “old way” of doing optimiza-
tion without incorporating any of the three constraints into the operators. The
first column in the table shows the percentage difference between the optimized
course-time produced with the original formulation, and the optimized course
time produced with the specified formulation. The second column shows the
percentage difference between the cost of performing the optimization with the
original formulation, and the cost of performing it with the specified formula-
tion.

24 DATA MINING FOR DESIGN AND MANUFACTURING

TABLE 12. Effect of using formula-
tions chosen by learner on optimization
performance. A positive quality change
indicates an improvement in quality
(which is a reduction in course time).

quality CPU time
method change change

omniscient +0.085% -36%
exhaustive +0.085% +384%

C4.5 +0.080% -35%
MFC +0.029% -32%
none 0 0

random -0.276% -40%
all -0.599% -74%

We also include in this table the performance of several other methods. A
hypothetical “omniscient” problem solver always magically guesses the best
possible choice (the one that results in the best course time).15 No learning
method will enable results superior to those produced by this method. The “ex-
haustive” optimization method performs eight optimizations for each goal, us-
ing all eight possible formulations, and then chooses the best resulting design.
Incorporating “all” constraints all the time results in the fastest possible opti-
mization within this set of formulations (at the cost of quality loss).

C4.5 produced a significant speedup in optimization, with no quality loss.
In fact, it produced a small quality increase. (This quality increase suggests that
with the original formulation, the optimizer gets “stuck” on the “ridges” that
the constraints cause the search space to have, and therefore sometimes fails
to get the optimum.) MFC produced a slightly smaller speedup and a slightly
smaller quality improvement. The difference between C4.5 and MFC in qual-
ity change was, however, statistically significant at the 99% confidence level,
according to the pairedt-test. Both learning methods performed substantially
better than random guessing. C4.5 performed almost as well as the hypotheti-
cal omniscient learner, which means it performed almost as well as any learner
could possibly do.16

Incorporating all of the constraints all of the time resulted in a very large
speedup, with a modest quality loss. This method may be appropriate if one
wants a quick and approximate optimization. It might, for example, be used in
the early stages of design when the engineer wants to get a feel for the search
space by asking “what-if” questions.

One question that these results raise is how training-data quantity affects
performance. If one does not have results from a large number of previous opti-
mizations available, then one can either run some extra optimizations to gener-
ate training data (which is expensive), or do the learning with less training data
(which is likely to produce higher error rates and lower optimization perfor-
mance). We ran some experiments to determine how C4.5’s performance varies

LEARNING TO SET UP OPTIMIZATIONS 25

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

E
rr

or
 r

at
e

Size of training set

"beam-constraint"
"winglet-constraint"

"displacement-constraint"

MFCC4.5

Figure 9. Effect of training set size on learner performance.

with training-set size, and how its performance compares with that of MFC for
various training-set sizes. We applied our learning approach to datasets of vary-
ing sizes, with the error rates shown in Figure 9. For each training-set size in the
figure, we randomly chose 10 different subsets of our training data of that size,
and performed 10-fold cross-validation on each subset. The figure shows the
averages. The three symbols at the right side of the figure show MFC’s perfor-
mance on the full training set. C4.5 outperformed MFC for every training-set
size, but C4.5’s error rate on smaller training sets was significantly larger than
C4.5’s error rate for larger training sets (with performance reaching an asymp-
tote for training sets of about 60 cases or more).

Formulation Selection Results in Airframe Domain

We believe that our formulation selection technique is applicable to a broad
range of design optimization problems. To test the domain-independence of
the formulation selection technique, we performed additional experiments in
the airframe domain, and compared the impact on optimization performance of
C4.5 with that of MFC.

In the airframe domain, there are eight design parameters, each of which
can have an upper and lower bound. The optimal design sometimes lies at the
bounds of some of these parameters, depending on the mission.

We used CFSQP as the optimizer, and used the same simulator and the

26 DATA MINING FOR DESIGN AND MANUFACTURING

overland <= 95.0872% : zero (54.0)
overland > 95.0872% :
| takeoff = no: zero (12.0/1.0)
| takeoff = yes: nonzero (10.0)

Figure 10. Learned decision tree for predicting if the taper ratio will be at its lower bound of
zero.

TABLE 13. Cross-validated error rates for selecting
whether to incorporate each lower bound, in the air-
frame domain.

design parameter C4.5 MFC Random

wing taper ratio 2.7% 14.5% 50.0%
wing sweep 2.5% 27.6% 50.0%

fuselage taper length 3.9% 22.4% 50.0%
fuel annulus width 13.6% 5.3% 50.0%

same space of missions as in the prototype synthesis experiments. We used
the same C4.5 decision tree to predict which missions are feasible. As training
data, we used the same 100 10-point random multistart CFSQP optimizations,
76 of which are feasible.

We used the 76 feasible missions to train C4.5 for formulation selection.
Of the eight design parameters, four were never at their upper or lower bounds
at the apparent optima for any of the 76 missions. The other four had optima
at their lower bounds for some missions. We trained C4.5 to predict whether
these four design parameters would be at their lower bounds, depending on the
mission. C4.5 produced a separate decision tree for each of these four design
variables. For example, Figure 10 shows the decision tree for wing taper ratio.
This decision tree says that wing taper ratio will be at its lower bound of zero,
unless the mission includes a takeoff phase and is almost entirely over land. The
four decision trees can be used to select among 16 (2

4) possible formulations.
Table 13 compares the cross-validated error rates of C4.5 with those of

most frequent class and random guessing for each of the four design param-
eters. For the first three parameters, C4.5 did much better than most frequent
class. For the fourth parameter, fuel annulus width, C4.5 did much worse than
most frequent class, violating our expectations. In this case, only 4 of the 76
training examples were positive examples. We suspect C4.5 would need more
training examples to be more accurate. Interestingly, in our prototype synthesis
experiments, CART had difficulty predicting the optimal value of fuel annulus
width.

To determine the impact of the formulations selected by the various meth-
ods on optimization performance, we randomly generated 25 new missions.
Table 14 compares the performance of the various methods of formulation
selection when doing optimizations for these new missions. For the methods

LEARNING TO SET UP OPTIMIZATIONS 27

TABLE 14. Effect of using for-
mulations chosen by learner on op-
timization performance, in airframe
domain.

time
method success change

omniscient 16 -51%
exhaustive 16 +1206%
C4.5/none 15 -36%

none 15 0
C4.5/MFC 13 -57%

MFC 13 -21%
all 3 -55%

that used C4.5, we used the decision tree of Figure 6 to predict whether each
new mission was feasible, and only performed optimizations for those mis-
sions that were predicted to be feasible. For the other methods, we performed
optimizations for all 25 missions. Each optimization was a 10-point multistart.
The “success” column indicates for how many of the missions the specified
method came within 1% in takeoff mass of the best design found.17 The “time
change” column shows the change in total number of simulations used in all of
the optimizations performed, compared with not incorporating any constraints.

Because cross-validation showed that C4.5 under-performs MFC for pre-
dicting whether to incorporate fuel annulus width, we did not use C4.5 to de-
cide whether to incorporate this parameter. We used C4.5 to decide whether
to incorporate the other three parameters, and used two different methods to
decide whether to incorporate fuel annulus width. The first method used MFC
to decide whether to incorporate the fuel annulus width, which resulted in al-
ways incorporating it. The results of this method are labeled “C4.5/MFC” in
Table 14. For the second method, we decided to play it safe and never incorpo-
rate fuel annulus width, since cross validation suggests that we are not able to
accurately predict when this parameter will be at its bound. The results of this
method are labeled “C4.5/none” in Table 14. We compare these methods with
most frequent class, and with the exhaustive method that does optimizations for
all 16 (24) formulations, and the omniscient method which magically guesses
the best formulation.

The first interesting thing to note about Table 14 is that there is one mis-
sion for which CFSQP failed to reach the optimum without reformulation. The
only way to reach the optimum for this mission is to use the “omniscient”
method (which does not exist), or the “exhaustive” method (which is extremely
expensive). The next thing to note is that using the formulations selected by
C4.5 for the first three parameters, while not incorporating fuel annulus width
(“C4.5/none”), reduces cost by 36% compared with not incorporating any con-
straints (“none”), without any loss of quality. Using C4.5 for the first three

28 DATA MINING FOR DESIGN AND MANUFACTURING

parameters, and MFC for fuel annulus width (C4.5/MFC), causes CFSQP to
fail to find the optimum in two additional cases. Using MFC for all parameters
causes the same number of missed optima, at a higher cost. And incorporating
all of the parameter bounds all of the time results in CFSQP almost always
failing to get to the optimum.

The airframe domain results are surprisingly similar to the yacht domain
results. In the yacht domain, using the formulations selected by C4.5 reduced
the cost of optimization by 35% (Table 12), while in the airframe domain the
speedup was 36%. In the yacht domain, using C4.5 also resulted in a small
quality increase, while in the airframe domain, quality remained the same. This
may be because the yacht domain reformulations increase the smoothness of
the search space (by eliminating the 12m-rule penalties), while the airframe
domain reformulations do not. Another interesting thing to note is that while
the difference between MFC and C4.5 was small (but statistically significant)
in the yacht domain, it was much larger in the airframe domain.

RELATED WORK

Cerbone (Cerbone, 1992) has reported work which applied machine-learning
techniques to a problem similar to our prototype-selection problem. His design
space, in the domain of truss design, has an exponential number of discon-
nected search spaces. He uses inductive learning techniques to learn rules for
selecting a subset of these search spaces for further exploration. In contrast,
our system has a smaller number of prototypes (each of which defines a search
space) from which to choose, and it just chooses one of them. Cerbone uses
an ad-hoc utility function to combine solution quality and search time when
evaluating his learning methods, while we only consider solution quality in
this chapter. Cerbone also presents two learners that incorporate background
knowledge by incorporating the objective function into the learner.

Research on prototype-retrieval strategies for hill-climbing design optimiza-
tion is reported by Ramachandranet al. (Ramachandran et al., 1992), who in-
vestigated a number of library-based methods for finding starting points for the
DPMED iterative parameter-design system. These included a nearest-neighbor
method, a curve-fitting method, and a hybrid method. The curve-fitting method
is similar to our prototype synthesis method. It uses regression to find a func-
tion mapping goal parameters to initial design parameters, whereas our ap-
proach uses inductive learning to find a regression tree mapping goal parame-
ters to initial design parameters. Ramachandranet al. compared their retrieval
strategies in terms of the numbers of iterations needed to carry out the hill-
climbing design-optimization process. They showed that starting points ob-
tained by curve fitting led to fewer iterations than were required when the
nearest-neighbor method was used. In contrast to this work, our work has eval-
uated retrieval strategies in terms of the quality of the resulting designs, in
addition to the number of iterations needed to find them.

Researchers in case-based reasoning have investigated the use of library-

LEARNING TO SET UP OPTIMIZATIONS 29

retrieval techniques for case-based design (Sycara and Navinchandra, 1992;
Kolodner, 1993), but have not used them to initialize an iterative design pro-
cess. (Bhatta and Goel, 1995) describe a system that learns to retrieve a starting
point for the design of a high-acidity sulfuric acid cooler. They evaluate the per-
formance of this indexing system based on its effect on retrieval time, and not
based on its impact on optimization performance.

In (Rasheed and Hirsh, 1999), Rasheed and Hirsh describe ascreening
modulethat they added to a genetic algorithm used for engineering design op-
timization. The screening module uses a nearest-neighbor approach to learn to
avoid evaluating points in the search space that are likely to have poor evalua-
tion functions because they are near other “bad” points. They tested their algo-
rithm in multiple domains, including the supersonic aircraft domain described
in this chapter, and found that the screening module makes the optimization
significantly faster.

Gelseyet al. (Gelsey et al., 1996) describe a Search Space Toolkit which
assists in determining properties of the search space that can be used for re-
formulation. (Choy and Agogino, 1986) describe a system that automates (Pa-
palambros and Wilde, 1988)’s method of using monotonicity analysis to detect
constraint activity.

In (Williams and Cagan, 1994), Williams and Cagan presentactivity anal-
ysis, a technique inspired by monotonicity analysis. Their technique is similar
to the formulation selection technique described in this chapter, except that
they use qualitative reasoning instead of machine learning to determine which
constraints will be active at the optimum. Their technique has the advantages
that it does not require training data, and that the reformulation is guaranteed
not to lose the global optimum. It has the disadvantage that it requires that the
objective function and constraint functions be symbolically differentiable and
composed of simple arithmetic operations; it would therefore not be applicable
to the complex simulators used in the experiments described in this chapter.

A number of research efforts have combined AI techniques with numerical
optimization. (Ellman et al., 1993) describes a method for switching between
a less expensive, less accurate simulator, and a more expensive, more accu-
rate simulator during optimization, based on the magnitude of the gradient.
(Bouchard et al., 1988) describes ways in which expert systems could be ap-
plied to the parametric design of aeronautical systems. (Hoeltzel and Chieng,
1987) describe a system for digital chip design in which design is done at an
abstract level, using machine learning to estimate the performance that would
be obtained if the design were carried out at a more detailed level. (Orelup
et al., 1988) describes a system called Dominic II that uses an expert system to
switch among various strategies during numerical optimization. None of these
efforts is focused directly on the problems of prototype selection and formula-
tion selection addressed in this chapter.

Simulated annealing (SA) and genetic algorithms (GA) are able to deal with
certain pathologies, such as nonsmoothness, but they tend to be much slower
than gradient-based optimization. They tend to require thousands, or even tens

30 DATA MINING FOR DESIGN AND MANUFACTURING

of thousands, of simulations, and are thus not practical when each simulation
is expensive.

Powell (Powell, 1990; Tong et al., 1992; Powell and Skolnick, 1993) has
built a module called Inter-GEN, part of the ENGINEOUS system (Tong, 1988),
that seeks to combine the ability of genetic algorithms to handle multiple local
optima with the speed of numerical optimization algorithms. It contains a ge-
netic algorithm, and a numerical optimizer, and uses a rule-based expert system
to decide when to switch between the two. Powell has tested his system on a
realistic jet engine design problem. He does not, however, address the issues of
prototype selection or formulation selection.

FUTURE WORK

This chapter presents an initial exploration of the use of inductive learning to
set up an optimization, and there are a number of directions for future work.
These directions for future work fall into three groups: extending this work to
more difficult design tasks, improving results by using other learning methods,
and applying inductive learning to other choices that must be made in setting
up an optimization.

Other Design Tasks

First, the experiments reported here explore the sensitivity of our prototype-
selection method to the nature of the design library, specifically with respect to
the quality of the stored designs. It would be helpful to more fully explore the
sensitivity of our approach to the design library, for example by studying how
our approach scales up as the library size increases.

The yacht domain results presented here apply to a constrained class of
yacht-design goals, those comprised of a single leg (for formulation selection)
or two legs (for prototype selection). One question is how this approach can be
applied to courses comprised of varying numbers of legs. We believe that we
could get reasonable optimization performance by using the trees learned from
single-leg courses to perform multi-leg formulation selection in the following
way: If a constraint should be incorporated for every leg of the race-course, then
incorporate it for the full, multi-leg course. We need to test how well optimiza-
tion performs when handling race-courses in this manner. We could also at-
tempt to learn directly for multi-leg race-courses. Doing so would raise an inter-
esting machine-learning question, since describing a multi-leg race-course re-
quires a variable number of attributes, and thus traditional learners such as C4.5
do not directly apply. Learning methods operating on more expressive repre-
sentations, such as inductive logic programming systems like FOIL (Quinlan,
1990), may enable going beyond the simple representation of goals used here
and handling more complicated goals, including those involving multi-leg race
courses or multiple disciplines.

LEARNING TO SET UP OPTIMIZATIONS 31

In the results presented here, we assume that the only change between the
previous design sessions and the current design session is the design goal (for
example, expressed as a(wind speed;heading) pair for formulation selection in
the yacht domain). An interesting question is what would happen if in addition
to changing the goal, we also changed the constraints, or the simulator, or the
form of the goal. We would need to find a way to encode as a set of attributes
for the learner whatever had changed.

We believe that the formulation selection results presented here will easily
generalize to situations in which there are more than sixteen formulations. We
used the results from the same set of 100 optimizations to perform three sep-
arate learning tasks (for three constraints), and then combined the rules gen-
erated by these three learning sessions to select one of the eight formulations.
As the number of formulations grows, the number of constraints, and therefore
the amount of CPU time needed for the learning, will grow logarithmically
with the number of formulations. The CPU time needed for learning is cur-
rently insignificant compared with the CPU time needed for the subsequent
optimizations. We expect that as the number of formulations grows, the num-
ber of training examples needed will remain constant (since the same training
examples are used for each constraint), and the amount of CPU time needed
for learning will remain insignificant. We plan to test this hypothesis by us-
ing other constraints within the yacht design domain, such as the “boat doesn’t
sink” constraint.

The learning approach could also be used to decide when to reformulate
soft constraints as hard constraints. If it were known with a high degree of con-
fidence that a certain soft constraint will not be violated at the optimum for cer-
tain goals, then this soft constraint could be converted into a hard constraint for
those goals, which would eliminate a ridge from the search space and thereby
make optimization more robust (although it would not reduce the dimensional-
ity of the search space). For example, in the training data that we collected, the
beam constraintwas never violated, so it might be replaced safely with a hard
constraint.

Other more-difficult problems might involve a less-smooth search space, a
higher-dimensional goal space, or a less reliable optimizer. Such problems may
arise when we test this method in still other domains.

Other Learning Methods

We found that C4.5 performed nearly as well as a hypothetical “omniscient”
learner, when doing formulation selection for the fairly simple design prob-
lems that we used in our experiments. When doing prototype selection, how-
ever, there was room for improvement. Other learning methods might prove
useful in attacking the prototype selection problem, and might also prove use-
ful when doing formulation selection for some of the harder design problems
described in the previous subsection. For example, it would be interesting to
see how well neural networks, nearest-neighbor methods, or statistical regres-

32 DATA MINING FOR DESIGN AND MANUFACTURING

4

6

8

10

12

14

16

18

20

40 60 80 100 120 140 160 180

w
in

d
sp

ee
d

(k
no

ts
)

heading (degrees)

"active"
"inactive"

Noise

Figure 11. Activity of the beam constraint over the goal space.

sion would perform. In particular, C4.5, like most decision-tree learners, uses
linear, axis-parallel cuts in its decision trees. However, Figure 11 shows how
the activity of the beam constraint varies over the goal space in the training
data we used — the space is clearly divided into two regions (except for one
point which we believe is noise). The border between these regions does not
appear to be axis parallel, and appears to be nonlinear. This suggests that better
formulation-selection performance might be achieved using an “oblique” deci-
sion tree learner, such as OC1 (Murthy et al., 1994), or by attempting to learn
nonlinear region boundaries.

As would be expected, even though our yacht-domain formulation-selection
results with C4.5 were nearly optimal for 100 examples, results degrade when
given less training data. Although it would be interesting to see if other learn-
ing methods would have better small-dataset performance, for any learner we
would expect performance to be inferior for small enough datasets. One ap-
proach for improving results in such small-dataset cases — as well as in other
cases where off-the-shelf learners such as C4.5 may not perform well even if
given larger datasets — is to integrate background knowledge into the learn-
ing process. One form of background knowledge that is often available, such
as in the yacht-design domain, ismodality constraints. This is knowledge that
expresses the modality of the learned class with respect to the attributes. For
example, we believe that optimalbeamis monotonically increasing in wind
speed, and monotonically decreasing in heading. We also know that the activ-
ity of any constraint of the formf(x1; x2; : : : ; xn) � k must be monotonic

LEARNING TO SET UP OPTIMIZATIONS 33

in k, so, for example, the activity of a cost constraint must be monotonic in
the cost threshold. One open question is how such knowledge could be inte-
grated into learning. One approach would be to use such modality constraints
to remove from the training data points that violate the constraints (on the as-
sumption that these points are noise). A second approach is to modify the tree
induction algorithm so that it will never construct a tree that violates the con-
straints. A similar approach was used to constrain decision lists in (Clark and
Matwin, 1993).

Finally, even after our learning approach is applied, every additional future
optimization can serve as an additional training point for the learning. Thus
learning methods that can work in an incremental fashion might also prove use-
ful for this task. In addition, it may prove useful to develop methods that select
suitable data prior to learning. For example, when there are not enough existing
optimizations to achieve adequate learning results, additional optimizations can
be performed to generate further training data. Rather than performing these
new optimizations for random goals or for a set of goals that span the goal
space, one could allow the learner to choose the goals to be used in the new
training data. Background knowledge — such as modality constraints — could
prove particularly useful in selecting such goals.

Other Setup Choices

We have applied inductive learning to several decisions that must be made
when setting up an optimization, including choosing a starting protype and a
formulation of the search space, and predicting whether a design goal is achiev-
able. There are other parts of the setup process to which inductive learning
might be applicable. For example, one might try to use inductive learning to
choose an optimization algorithm, or a good value of the optimizer’s stopping
tolerance, or a good step size to use in gradient computation, or a good box
within which to randomly generate starting prototypes, or a good number of
random starting prototypes to generate, or the right level of accuracy to use
in the simulator. For each of these decisions, it would need to be determined
whether the best choice depends on the design goal. Finally, more experiments
need to be done to explore the impact on optimization performance of using
inductive learning to simulataneously make multiple choices within the opti-
mization setup problem.

CONCLUSION

Gradient-based methods do not perform well when optimizing designs using
simulators that have pathologies. We have described and demonstrated the util-
ity of four techniques that improve optimization performance in such situations
by using inductive learning to make decisions when setting up the design op-
timization. Two of these are methods of choosing an initial prototype for opti-
mization. Prototype selection is especially appropriate in domains such as the

34 DATA MINING FOR DESIGN AND MANUFACTURING

yacht domain in which there is a database of previous designs available, and
the available simulators are noisy. Prototype synthesis is especially appropri-
ate in domains such as the aircraft domain in which finding a feasible design
is difficult. The third technique, feasible goal prediction, is similarly useful in
such a domain.

We tested the fouth technique, formulation selection, in both the yacht do-
main and the aircraft domain. We showed that using this technique can make
design optimization faster, because the reformulation reduces the dimensional-
ity of the search space, and more reliable, because the reformulation can make
the search space smoother.

NOTES

1The cost of generating this table is discussed in the “Cost of Learning” subsection.

2CART stands for Classification And Regression Trees

3We call the simulatormultidisciplinarybecause it contains code to evaluate the design using
several engineering disciplines. For example, our aircraft simulator includes weights, aerody-
namics, and propulsion.

4In 1992, the 12-meter class was replaced with the new America’s Cup Class.

5This is the boat that won the 1987 America’s Cup competition, returning the trophy to the
United States after an Australian win in 1983 (Letcher et al., 1987).)

6The four operators we chose wereScale-X, Scale-Y, Prism-Y, andScale-Keel. We chose these
operators because the results of our earlier work on operator-importance analysis suggested that
these are the four most important operators (Ellman and Schwabacher, 1993).

7CFSQP stands for “C code for Feasible Sequential Quadratic Programming.”

8A quadratic programming problem consists of a quadratic objective function to be optimized,
and a set of linear constraints.

9Some randomly generated designs, which we call “unevaluable points,” cannot be simulated,
either because the designs are meaningless or because of limitations of the simulator.

10Because CFSQP failed to find a feasible point in some of these optimizations, it was not
possible to compute the average design quality.

11The simulator assumes that there is perfect reefing, so additional sail area can never hurt the
yacht’s performance.

12Because we incorporated the 12-Meter rule into the simulator, we did not need to use it as an
explicit constraint.

13Although this figure shows only a “snapshot” of the search space for specific values of the
other design parameters, we believe that the trend shown in the figure is generally applicable.

14Operators containing numerical solvers would probably be more computationally expensive
than operators containing the algebraic solutions of the constraint functions, so the CPU time
savings from reformulation would probably be smaller.

LEARNING TO SET UP OPTIMIZATIONS 35

15We simulated the omniscient learner by performing optimizations using all eight formula-
tions for each goal (as in the “exhaustive” method), and then ignoring the cost of the seven
optimizations that turned out not to be best.

16Interestingly, according to thet-test, the difference between C4.5 and the omniscient method
was not statistically significant, but this just illustrates a limitation of thet-test, since we know
that the omniscient method really is better, on average, than C4.5.

17Because CFSQP failed to find a feasible point in some of these optimizations, it was not
possible to compute the average design quality.

ACKNOWLEDGMENTS
This research has benefited from numerous discussions with members of the Rutgers HPCD
project. We especially thank Gerard Richter for his contributions to the formulation selection
work, Andrew Gelsey for helping with the cross-validation code, John Keane for helping with
RUVPP, and Andrew Gelsey, Brian Davison, and Tim Weinrich for comments on previous drafts
of this chapter. This research was supported by the Advanced Research Projects Agency of
the Department of Defense under ARPA-funded NASA grant NAG 2-645 and under contract
ARPA-DABT 63-93-C-0064. Mark Schwabacher was a Postdoctoral Research Associate at the
National Institute of Standards and Technology for a portion of the time that he worked on
this research; during that time he was supported by a National Research Council Postdoctoral
Research Associateship. This chapter was previously published in a slightly different version as a
journal article inAI EDAM12:2; we thank Cambridge University Press for giving us permission
to republish it here.

CURRENT ADDRESSES
Mark Schwabacher
NASA Ames Research Center
MS 269-1
Moffett Field, CA 94035

Thomas Ellman
Department of Computer Science
Vassar College
Poughkeepsie, New York 12601

REFERENCES

Bhatta, S. and Goel, A., Model-based design indexing and index learning in engineering design,
in Working Notes of the IJCAI Workshop on Machine Learning in Engineering, 1995.

Bouchard, E. E., Kidwell, G. H., and Rogan, J. E., The Application of Artificial Intelligence
Technology to Aeronautical System Design, inAIAA/AHS/ASEE Aircraft Design Systems and
Operations Meeting, Atlanta, Georgia, 1988, AIAA-88-4426.

Breiman, L., Classification And Regression Trees, Belmont, Calif.: Wadsworth International
Group, 1984.

Cerbone, G., Machine learning in engineering: Techniques to speed up numerical optimization,
Technical Report 92-30-09, Oregon State University Department of Computer Science, 1992,
Ph.D. Thesis.

Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M., and Watt, S., First Leaves: A Tutorial
Introduction to Maple V, Springer-Verlag and Waterloo Maple Publishing, 1992.

Choy, J. and Agogino, A., SYMON: Automated Symbolic Monotonicity Analysis System for
Qualitative Design Optimization, inProceedings ASME International Computers in Engineering

36 DATA MINING FOR DESIGN AND MANUFACTURING

Conference, 1986.

Clark, P. and Matwin, S., Using qualitative models to guide inductive learning, inProceedings
of the tenth international machine learning conference, 49–56, Morgan Kaufmann, 1993.

Ellman, T., Keane, J., and Schwabacher, M., The Rutgers CAP Project Design Associate, Tech-
nical Report CAP-TR-7, Department of Computer Science, Rutgers University, New Brunswick,
NJ, 1992, ftp://ftp.cs.rutgers.edu/pub/technical-reports/cap-tr-7.ps.Z.

Ellman, T., Keane, J., and Schwabacher, M., Intelligent Model Selection for Hillclimbing Search
in Computer-Aided Design, inProceedings of the Eleventh National Conference on Artificial
Intelligence, 594–599, Washington, DC: MIT Press, Cambridge, MA, 1993.

Ellman, T. and Schwabacher, M., Abstraction and Decomposition in Hillclimbing Design Opti-
mization, Technical Report CAP-TR-14, Department of Computer Science, Rutgers University,
New Brunswick, NJ, 1993, ftp://ftp.cs.rutgers.edu/pub/technical-reports/cap-tr-14.ps.Z.

Gelsey, A., Schwabacher, M., and Smith, D., Using Modeling Knowledge to Guide Design
Space Search, AI Journal, 101(1-2), 35–62, 1998.

Gelsey, A., Smith, D., Schwabacher, M., Rasheed, K., and Miyake, K., A Search Space Toolkit:
SST, Decision Support Systems, 18, 341–356, 1996.

Hoeltzel, D. and Chieng, W., Statistical Machine Learning for the Cognitive Selection of Non-
linear Programming Algorithms in Engineering Design Optimization, inAdvances in Design
Automation, Boston, MA, 1987.

IYRU, The Rating Rule and Measurement Instructions of the International Twelve Metre Class,
International Yacht Racing Union, 1985.

Kolodner, J., Case-Based Reasoning, San Mateo, CA: Morgan Kaufmann Publishers, 1993.

Lawrence, C., Zhou, J., and Tits, A., User’s Guide for CFSQP Version 2.3: A C Code for Solv-
ing (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates
Satisfying All Inequality Constraints, Technical Report TR-94-16r1, Institute for Systems Re-
search, University of Maryland, College Park, MD, 1995.

Letcher, J., The Aero/Hydro VPP Manual, Southwest Harbor, ME: Aero/Hydro, Inc., 1991.

Letcher, J., Marshall, J., Oliver, J., and Salvesen, N., Stars and Stripes, Scientific American,
257(2), 1987.

Murthy, S., Kasif, S., Salzberg, S., and Beigel, R., A System for Induction of Oblique Decision
Trees, Journal of Artificial Intelligence Research, 2, 1–32, 1994.

Orelup, M. F., Dixon, J. R., Cohen, P. R., and Simmons, M. K., Dominic II: Meta-Level Control
in Iterative Redesign, inProceedings of the National Conference on Artificial Intelligence, 25–
30, St. Paul, MN: MIT Press, Cambridge, MA, 1988.

Papalambros, P. and Wilde, J., Principles of Optimal Design, New York, NY: Cambridge Uni-
versity Press, 1988.

Powell, D., Inter-GEN: A Hybrid Approach to Engineering Design Optimization, Ph.D. thesis,
Rensselaer Polytechnic Institute Department of Computer Science, Troy, NY, 1990.

Powell, D. and Skolnick, M., Using genetic algorithms in engineering design optimization with
non-linear constraints, inProceedings of the Fifth International Conference on Genetic Algo-
rithms, 424–431, Univeristy of Illinois at Urbana-Champaign: Morgan Kaufmann, Los Altos,
CA, 1993.

Quinlan, J. R., Learning logical definitions from relations, Machine Learning, 5, 239–266, 1990.

Quinlan, J. R., C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann,
1993.

Ramachandran, N., Langrana, N., Steinberg, L., and Jamalabad, V., Initial Design Strategies for
Iterative Design, Research in Engineering Design, 4, 159–169, 1992.

LEARNING TO SET UP OPTIMIZATIONS 37

Rasheed, K. and Hirsh, H., Learning to be Selective in Genetic-Algorithm-Based Design Opti-
mization, Artificial Intelligence for Engineering Design, Analysis, and Manufacturing, 13, 1999.

Rogers, D. and Adams, J., Mathematical elements for computer graphics, McGraw-Hill, second
edition, 1990.

Schwabacher, M., The Use of Artificial Intelligence to Improve the Numerical Opti-
mization of Complex Engineering Designs, Technical Report HPCD-TR-45, Department
of Computer Science, Rutgers University, New Brunswick, NJ, 1996, Ph.D. Thesis.
http://www.cs.rutgers.edu/�schwabac/thesis.html.

Schwabacher, M. and Gelsey, A., Intelligent Gradient-Based Search of Incompletely Defined
Design Spaces, Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
11(3), 199–210, 1997.

Sycara, K. and Navinchandra, D., Retrieval Strategies in a Case-Based Design System, in
C. Tong and D. Sriram, editors,Artificial Intelligence in Engineering Design (Volume II), 145 –
164, New York, NY: Academic Press, 1992.

Tong, S. S., Coupling Symbolic Manipulation and Numerical Simulation for Complex Engi-
neering Designs, inInternational Association of Mathematics and Computers in Simulation
Conference on Expert Systems for Numerical Computing, Purdue University, West Lafayette,
IN, 1988.

Tong, S. S., Powell, D., and Goel, S., Integration of Artificial Intelligence and Numerical Opti-
mization Techniques for the Design of Complex Aerospace Systems, in1992 Aerospace Design
Conference, Irvine, CA, 1992, AIAA-92-1189.

Williams, B. and Cagan, J., Activity Analysis: The Qualitative Analysis of Stationary Points for
Optimal Reasoning, inProceedings of the Twelfth National Conference on Artificial Intelligence,
1217–1223, Seattle, WA: MIT Press, 1994.

